If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-78=0
a = 4; b = 2; c = -78;
Δ = b2-4ac
Δ = 22-4·4·(-78)
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{313}}{2*4}=\frac{-2-2\sqrt{313}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{313}}{2*4}=\frac{-2+2\sqrt{313}}{8} $
| -6(x+1)-13=21+2 | | 19-13=2(x-7) | | 2x+3)(3x+1)=11x+30 | | 17x+24=7x+5 | | 21x-22x=9-10 | | 2x+8=9x-28 | | 6x+-24=-4x+28 | | 30x+7=5 | | 45x-5=150 | | 1.2d=13.2 | | 45x÷5=150 | | 2.5t=0.48 | | 291=x^2 | | 45x×5=150 | | 13x-4x=42-5x | | 45x+5=150 | | x^2=144+81 | | 2x−2=2−2x | | 8=(4x-3) | | X/3+4=x/2+7/2 | | Y=-4x^2+9 | | 29=(-)8t-3 | | 4X+5y=50/2 | | x^+5=17 | | 21p+25=27 | | 6/y=9-24 | | x^=41=0 | | -3(5t-5)+9t=7t-9 | | 8x-37=2x-5 | | 4x-42-6x=88 | | 7u=–18−11u | | 18x+3=10x+35 |